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Abstract
The Hedin equations for the electron self-energy and the vertex were originally derived for a
many-electron system with Coulomb interaction (Hedin 1965 Phys. Rev. 139 A796). Here, we
present a generalized set of Hedin equations for quantum many-body systems containing
spin-dependent interactions, e.g. spin–orbit and spin–spin interactions. The corresponding
spin-dependent GW approximation is constructed. This work should open the way to describing
the interplay of correlations and spin-dependent interactions in systems such as quantum dots or
wires, as well as in interface and surface problems.

1. Introduction

During the last decades many materials with intriguing
properties have been discovered. In many of these new
materials the properties depend directly or indirectly on the
electron spin degree of freedom. Some important examples are
spintronics devices, colossal magnetoresistance materials or
magnetic impurities in semiconductors. A proper description
of the interplay between spin, charge and orbital degrees of
freedom is crucial for understanding the electronic properties
of these new materials. It is therefore timely to generalize
one of the most important first-principles many-body methods
used nowadays for describing electronic excitations, the Hedin
equations, to spin-dependent interactions. These equations
provide an iterative scheme for an expansion of the self-
energy in powers of the screened interaction. In particular,
the lowest-order approximation leads to the GW approximation
(GWA) [1–3] which has proven very successful in studying
one-particle excitation energies of real materials entirely from
first-principles.

Spin-dependent interactions can be crucial, despite the
tiny energy scales associated with them. To cite an
example, the conduction band spin splitting in zinc blende

semiconductors arising from spin–orbit coupling is only tens
of meV and yet it is important for applications in spintronics:
it determines the spin lifetimes and can induce a spin current in
the absence of a magnetic field, the so-called Rashba effect [5].
In some cases, such as gold, spin–orbit coupling can alter the
band structure rather significantly, by about an eV [4]. The
spin density wave in chromium is another example where it
is important to take into account spin variables. The spin-
dependent interactions may arise from relativistic effects, such
as spin–orbit coupling, or from an external perturbation, as in
the case of a magnetic impurity in a semiconductor.

2. Spin dependence in GW calculations and models

In Hubbard-like models, it appears that the effective interaction
or the Hubbard U depends on the spin variable, despite
the absence of explicitly spin-dependent interactions in the
Hamiltonian of the real system upon which the model is
based [6]. Upon closer examination it becomes clear that the
spin dependence actually arises from the basis-set expansion.
Thus, the spin flip processes from one orbital to another are
virtual processes, rather than real physical processes.
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Consistently, in deriving the closed set of Hedin
equations, starting from a many-body Hamiltonian with purely
Coulombic interaction, it turns out that the screened interaction
has no spin dependence when the derivation is performed in
a real space representation without introducing a set of spin-
dependent basis functions. Although the self-energy may
depend on the spin variable, this dependence arises solely from
a possible spin dependence in the Green function. Indeed
it can be shown that the linear response of the self-energy
with respect to the magnetic field vanishes when the many-
body Hamiltonian is purely Coulombic. The magnetic-field-
dependent term is only of one-particle type, giving no self-
energy contribution. The dependence of the self-energy on
the magnetic field arises when the many-body Hamiltonian
contains terms which are explicitly spin dependent. Thus, in
the following, we consider a system of electrons with explicitly
spin-dependent interactions as described by the Hamiltonian

Ĥ0 =
∑

κ

∫
d3r ψ̂+

κ (r)h0(r)ψ̂κ (r)+ 1
2

∑

κβγη

∫
d3r d3r ′

× ψ̂+
κ (r)ψ̂

+
β (r

′)vκγβη(r, r′)ψ̂η(r′)ψ̂γ (r) (1)

where h0 is the one-particle Hamiltonian. The identity of the
particles implies that the second term is invariant under particle
interchange: vκγβη(r, r′) ↔ vβηκγ (r′, r).

3. The Hedin equations for spin-dependent
interactions

Starting from the above Hamiltonian we have derived the
following closed set of Hedin equations (for a detailed
derivation we refer to [7]):

�αβ(1, 2) = −σ I
αηGηγ (1, 4)
J

γβ(4, 2, 5)WJ I (5, 1), (2)

WI J (1, 2) = vI J (1, 2)+ vI K (1, 3)PK L(3, 4)WL J (4, 2), (3)

PI J (1, 2) = σ I
αβGβγ (1, 3)
J

γη(3, 4, 2)Gηα(4, 1+), (4)


I
αβ(1, 2, 3) = δ(1 − 2)δ(2 − 3)σ I

αβ (5)

+ δ�αβ(1, 2)

δGγη(4, 5)
Gηη′ (4, 6)
I

η′κ(6, 7, 3)Gκγ (7, 5). (6)

The Dyson equation needed to close the loop is

Gαβ(1, 2) = G0
αβ(1, 2)+ G0

αγ (1, 3)�γη(3, 4)Gηβ(4, 2). (7)

Here, σ i , i = x, y, z, are the Pauli spin matrices and σ 0

is defined to be a 2 × 2 unit matrix. Capital letter indices
run over 0, x, y, z, while Greek letters take the spin variable
values ±1. We use the following common shorthand notation:
(xτ ) is represented by a number, repeated indices are summed
and repeated variables represented by numbers are integrated,
unless they appear on both sides of the equation. For clarity, we
further adopt a notation that quantities with a subscript denoted
by capital letter do not depend on spin, such as PI J . The spin-
dependent interaction has been expanded in the Pauli and unit
matrices as

vαηκγ (1, 2) = σ I
αηvI J (1, 2)σ J

κγ . (8)

As can be seen clearly in the above set of equations, the
screened interaction expresses an interdependence between the

charge and spin responses. Thus, a change in the charge density
induces spin fluctuations, and vice versa. It is also clear that the
self-energy is now a truly spin-dependent quantity in the sense
that it is affected by the spin fluctuations as opposed to its spin
dependence originating from the electron propagator or the
Green function, which is already the case in the original Hedin
equations. The vertex 
 is now a rather complex quantity
reflecting the intricate interplay between the change of the self-
energy with respect to the electric field and the change with
respect to the magnetic field.

The spin-Hedin equations can be applied, for example, to
Hamiltonians containing interactions of the following form:

vαγβη(r, r′) =

⎧
⎪⎪⎨

⎪⎪⎩

σ 0
αγ σ

0
βη/|r − r′|,

σ i
αγ Ji j(r, r′)σ j

βη,

σ i
αγ μi(r, r′)σ 0

βη

(9)

where the first is the usual Coulomb interaction, the second
a spin–spin interaction and the third a spin–orbit interaction,
which contains the angular momentum operator.

4. The σGσW approximation and its interpretation

To appreciate the significance of the new set of Hedin equation
it is constructive to consider a generalization of the Hedin
GWA, by approximating the vertex functions by


I
αβ(1, 2, 3) = δ(1 − 2)δ(2 − 3)σ I

αβ . (10)

The polarization then becomes

PI J (1, 2) = σ I
αβGβγ (1, 2)σ J

γηGηα(2, 1+) (11)

yielding the self-energy

�GW
αβ (1, 2) = −σ I

αηGηγ (1, 2)σ J
γβWJ I (2, 1). (12)

To assess the physical meaning of these equations we
first consider the special case of spin-independent interactions.
Many materials in fact possess an inherent spin structure, such
as a spin-spiral structure arising from exchange interaction but
without an explicit spin-dependent interaction. In this case, the
Green function acquires non-diagonal spin components and for
a non-interacting Green function we have explicitly

G0
αβ(r, r′; iω) =

∑

n

φ∗
nα(r)φnβ(r′)

iω − εn
(13)

where φnα and εn are some one-particle wavefunction and
eigenenergy, respectively. The polarization is computed
according to (11) but since the interaction is purely Coulombic,
vI J = v00δI J δI0 and only the charge component P00 is needed:

P00(1, 2) = Gαγ (1, 2)Gγα(2, 1+). (14)

The screened interaction is given by (3), which consequently
only retains the charge channel:

W00(1, 2) = v00(1, 2)+ v00(1, 3)P00(3, 4)W00(4, 2). (15)
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This is then used in (12) to construct the self-energy, which
naturally acquires non-diagonal components in the spin space
and we obtain a generalization of the original Hedin equations
to a spin-dependent Green function and self-energy with purely
Coulombic interaction:

�GW
αβ (1, 2) = −Gαβ(1, 2)W00(2, 1). (16)

This emerges naturally in the present formulation as a special
case where explicitly spin-dependent interactions are absent.
As can be seen in the above equation, the dependence of the
self-energy on the spin variable arises entirely from the Green
function rather than the screened interaction. Using this self-
energy one solves the Dyson equation (7) to obtain a new Green
function or one can also solve the quasiparticle equation

[h0(1)σ 0
αβ + V H

αβ(1)]ψnβ(1)

+ �GW
αβ (1, 2; En)ψnβ(2) = Enψnα(1) (17)

where V H
αβ = V H

I σ
I
αβ is the generalized spin-dependent Hartree

potential where

V H
I (1) = ρJ (3)vJ I (3, 1) (18)

with the charge and spin density given by

ρI (1) = Gγ κ (1, 1+)σ I
κγ . (19)

Self-consistency may be reached by using the new Green
function to calculate a new P , W and�. The cycle is continued
until self-consistency is achieved, and in the case of spin–orbit
coupling one obtains a self-consistent screened μ. Correlation
effects on orbital moments and spin densities can then be
accessed including life-time effects.

Let us now consider the case when the interaction is spin
dependent, which may arise from purely spin–spin interaction
or spin–orbit coupling, among other possibilities. A particle
of up spin G0

↑↑ enters the self-energy �↑↑. Upon entering
the self-energy the electron spin is flipped to down spin by a
spin operator σ i

↑↓ and a magnon represented by Wi j is emitted.

Upon leaving the self-energy the spin operator σ j
↓↑ causes the

electron to reabsorb the magnon and return to its original up
spin configuration. This process is analogous to the original
Hedin GWA whereby an electron emits and absorbs a plasmon
but without the possibility of spin flip (upper panel of figure 1).

5. Conclusions

In conclusion, we have extended the original set of
Hedin equations for many-electron systems with purely
Coulombic interaction to systems with explicitly spin-
dependent interactions. The charge and spin degrees of
freedom are coupled through the equations: a change in
the charge density induces a change in the spin density,
and vice versa. The first-order self-energy term (in the
spin-dependent screened interaction) leads to a generalized
σGσW approximation. These equations allow for a truly first-
principles study of a wide range of problems where correlation

Figure 1. In the usual GWA only the diagram of the upper panel
appears. The new σGσW approximation also includes the possibility
of spin flips at the interaction vertices (see the diagram in the lower
panel).

effects induced by spin interactions and the interplay between
the charge and spin degrees of freedom play a crucial role in
determining physical properties. We envisage applications to
nanoscale magnetic systems ranging from quantum dots and
quantum wires to magnetic impurities in semiconductors or
nanoparticles, as well as to crystals with inherent spin structure
and to film, surface and interface problems [8, 9]. From a
theoretical point of view, the recently proposed GW + DMFT
scheme [10] can also be extended to systems with explicitly
spin-dependent interactions.
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